METHODOLOGICAL AND PHYSIOLOGICAL ASPECTS OF HEART RATE VARIABILITY APPLICATION IN TRAINING PROCESS MANAGEMENT: A CRITICAL ANALYSIS OF DIGITAL SMART DEVICE DATA
DOI:
https://doi.org/10.31891/pcs.2025.4.29Keywords:
information technology, heart rate variability (HRV), autonomic nervous system (ANS), RMSSD, SDNN, PNN50, training process, parasympathetic overtraining, cardio training, wearable devices, data trendsAbstract
This critical analysis examines the integration of Heart Rate Variability (HRV) monitoring from consumer wearables into athletic training. HRV, a non-invasive biomarker of autonomic nervous system balance, has become a "gold standard" for assessing functional state. However, the proliferation of smart devices (Apple, Garmin, Polar, Samsung) has created a paradox of accessibility versus interpretative clarity. The study deconstructs the core physiology, contrasting the rapid parasympathetic metric RMSSD (used for recovery assessment in performance-focused ecosystems like Garmin) with the broader adaptive-capacity metric SDNN (common in wellness-focused systems like Apple). A central finding is the critical algorithmic heterogeneity across platforms, which renders direct comparison of absolute values between different device ecosystems fundamentally flawed. The work highlights significant methodological pitfalls, most notably the dangerous condition of parasympathetic overreaching, where paradoxically high HRV can mask severe fatigue and imminent performance decline. Furthermore, HRV is profoundly confounded by non-training stressors (sleep, diet, illness), emphasizing its role as a sensitive but non-specific marker of homeostatic disturbance. Consequently, effective application requires a paradigm shift from isolated daily readings to longitudinal trend analysis against an individual baseline. The study concludes that HRV is a facultative, not primary, tool. It must be integrated via a "triangulation" principle, where its objective data is consistently verified against subjective athlete feedback (well-being, sleep quality) and quantitative training load metrics to inform robust, individualized coaching decisions and avoid the risks of misinterpreting simplified commercial readiness scores.
References
Vovkanych, L., & Fedkiv, M. (2025). The Influence of Cognitive and Emotional Load on Heart Rate Variability: Neurophysiological Mechanisms and Modern Analysis Approaches. Research Notes, 58-70. [DOI: 10.31654/2786-8478-2025-BN-2-58-70].
Liashenko, Valentyna, & Stetsenko, Serhii. (2024). Peculiarities of Heart Rate Variability Against the Background of Sleep Disorders and Stress Factors: A Theoretical Aspect. Slobozhanskyi Scientific Journal. Series: Natural Sciences, 43-49. [DOI: 10.32782/naturalspu/2024.1.5].
Mytskan, B., Ostapiak, Z., Mytskan, T., Korobeinikov, G., Drozd, S., & Tsynarskyi, V. (2022). Heart Rate Variability in Athletes. Rehabilitation & Recreation Aspects of Human Development (Rehabilitation & Recreation), 12, 128-143. [DOI: 10.32782/2522-1795.2022.12.18].
Shevets, Valentyna. (2023). Indicators of Autonomic Dysfunction in Athletes with Signs of Overtraining. Sports Medicine, Physical Therapy and Ergotherapy, 53-57. [DOI: 10.32652/spmed.2023.1.53-57].
Antelmi, I., de Paula, R. S., Shinzato, A. R., Peres, C. A., Mansur, A. J., & Grupi, C. J. (2004). Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. The American Journal of Cardiology, 93 (3), 381–385.
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30(2), 183–196. https://doi.org/10.1111/j.1469-8986.1993.tb01731.x
Buchheit M. (2014). Monitoring training status with HR measures: do all roads lead to Rome?. Frontiers in physiology, 5, 73. https://doi.org/10.3389/fphys.2014.00073
Cheng, Y. C., Huang, Y. C., & Huang, W. L. (2019). Heart rate variability as a potential biomarker for alcohol use disorders: A systematic review and meta-analysis. Drug and alcohol dependence, 204, 107502. https://doi.org/10.1016/j.drugalcdep.2019.05.030
Coote J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental physiology, 95(3), 431–440. https://doi.org/10.1113/expphysiol.2009.
Damoun, N., Amekran, Y., Taiek, N., & Hangouche, A. J. E. (2024). Heart rate variability measurement and influencing factors: Towards the standardization of methodology. Global cardiology science & practice, 2024(4), e202435. https://doi.org/10.21542/gcsp.2024.35
Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants (Basel, Switzerland), 11(2), 350. https://doi.org/10.3390/antiox11020350
Ernst G. Heart-Rate Variability-More than Heart Beats? Front. Public. Health. 2017;5:240. doi: 10.3389/fpubh.2017.00240.
Gitler, A., Bar Yosef, Y., Kotzer, U., & Levine, A. D. (2025). Harnessing non invasive vagal neuromodulation: HRV biofeedback and SSP for cardiovascular and autonomic regulation (Review). Medicine international, 5(4), 37. https://doi.org/10.3892/mi.2025.236
Grossman, Paul & Taylor, Edwin. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological psychology. 74. 263-85. 10.1016/j.biopsycho.2005.11.014.
Hernando, D., Roca, S., Sancho, J., Alesanco, Á., & Bailón, R. (2018). Validation of the Apple Watch for Heart Rate Variability Measurements during Relax and Mental Stress in Healthy Subjects. Sensors, 18(8), 2619. https://doi.org/10.3390/s18082619
Hottenrott, Laura & Gronwald, Thomas & Hottenrott, Kuno & Wiewelhove, Thimo & Ferrauti, Alexander. (2021). Utilizing Heart Rate Variability for Coaching Athletes During and After Viral Infection: A Case Report in an Elite Endurance Athlete. Frontiers in Sports and Active Living. 3. 10.3389/fspor.2021.612782.
Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. H., & Koo, B. H. (2018). Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investigation, 15 (3), 235–245. https://doi.org/10.30773/pi.2017.08.17
Kim, S.H., Lim, K.R., Seo, JH. et al. Higher heart rate variability as a predictor of atrial fibrillation in patients with hypertension. Sci Rep 12, 3702 (2022). https://doi.org/10.1038/s41598-022-07783-3
Le Meur, Y., Pichon, A., Schaal, K., Schmitt, L., Louis, J., Gueneron, J., ... & Hausswirth, C. (2013). Evidence of parasympathetic hyperactivity in functionally overreached athletes. Medicine & Science in Sports & Exercise, 45 (11), 2061–2071. DOI: 10.1249/MSS.0b013e3182980125
Lundstrom C.J., Foreman N.A., Biltz G. Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. Int. J. Sports Med. 2023;44:9–19. doi: 10.1055/a-1864-9726.
Malik, M. et al. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17 (3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
Marek Malik, J. Thomas Bigger, A. John Camm, Robert E. Kleiger, Alberto Malliani, Arthur J. Moss, Peter J. Schwartz, Heart rate variability: Standards of measurement, physiological interpretation, and clinical use, European Heart Journal, Volume 17, Issue 3, March 1996, Pages 354–381, https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
Plews, D.J., Laursen, P.B., Kilding, A.E. et al. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol 112, 3729–3741 (2012). https://doi.org/10.1007/s00421-012-2354-4
Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Medicine, *43*(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8
Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., & Laursen, P. B. (2017). Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. International Journal of Sports Physiology and Performance, 12(10), 1324-1328. Retrieved Dec 3, 2025, from https://doi.org/10.1123/ijspp.2016-0668
Rehman, R. Z. U., Chatterjee, M., Manyakov, N. V., Daans, M., Jackson, A., O’Brisky, A., Telesky, T., Smets, S., Berghmans, P.-J., Yang, D., Reynoso, E., Lucas, M. V., Huo, Y., Thirugnanam, V. T., Mansi, T., & Morris, M. (2024). Assessment of Physiological Signals from Photoplethysmography Sensors Compared to an Electrocardiogram Sensor: A Validation Study in Daily Life. Sensors, 24(21), 6826. https://doi.org/10.3390/s24216826.
Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. International Journal of Cardiology, 166 (1), 15–29.
Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Tiwari, R., Kumar, R., Malik, S., Raj, T., & Kumar, P. (2021). Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Current cardiology reviews, 17(5), e160721189770. https://doi.org/10.2174/1573403X16999201231203854
Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. Journal of the American College of Cardiology, 31 (3), 593–601
Voss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS ONE, 10 (3), e0118308. https://doi.org/10.1371/journal.pone.0118308.
Weinschenk, S. W., Beise, R. D., & Lorenz, J. (2016). Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects. European journal of applied physiology, 116(8), 1527–1535. https://doi.org/10.1007/s00421-016-3401-3
Wecht, J. M., Ciccone, A. B., Siedlik, J. A., Deckert, J. A., Nguyen, N. D., & Weir, J. P. (2017). Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle & Nerve, 56(4), 674–678. https://doi.org/10.1002/mus.25573
Yoshizaki, T., Tada, Y., Hida, A., Sunami, A., Yokoyama, Y., Togo, F., & Kawano, Y. (2013). Influence of dietary behavior on the circadian rhythm of the autonomic nervous system as assessed by heart rate variability. Physiology & behavior, 118, 122–128. https://doi.org/10.1016/j.physbeh.2013.05.010
Zhang, L., Li, B., & Wu, L. (2025). Heart rate variability in patients with atrial fibrillation of sinus rhythm or atrial fibrillation: chaos or merit?. Annals of medicine, 57(1), 2478474. https://doi.org/10.1080/07853890.2025.2478474
Zulfiqar, Usman & Jurivich, Donald & Gao, Weihua & Singer, Donald. (2010). Relation of High Heart Rate Variability to Healthy Longevity. The American journal of cardiology. 105. 1181-5. 10.1016/j.amjcard.2009.12.022.
Published
Issue
Section
License
Copyright (c) 2025 Олександр АНТОНЮК, Віктор ЦІСАР

This work is licensed under a Creative Commons Attribution 4.0 International License.



